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A B STR A CT

This paper explores the use of "t"~-statistics based on two or four

order statistics. The functions of the order statistics which are

used to define the "t"-statistics are the hinges. The hinges are

approximately the quartiles and are either exact order statistics

or the means of two adjacent order statistics. Two "t"-statistics

based on the hinges are examined and compared to other t-statistics,

including Student's t , using various criteria.
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1. INTRODUCTION

The estimation of the location of a sample by a point value, or

by a confidence interval, has long been of major concern for statis-

ticians. It is well known that, if the underlying distribution of

the sample in question is Gaussian with unknown variance, then the

intervals based on Student's t statistics are the best that can

be achieved. However, when Gaussianity is not the case, as many who

work with real data believe, Student's t intervals can be inappro-

priate. If the underlying distribution of the sample is heavier-

tailed than the Gaussian then the Studnet's t intervals tend to

be very long, i.e., conservative (e.g., Benjamini 1980). So, if the

sample has more values out in the far ends of the tails than would

usually be expected from a Gaussian sample of that size, confidence

intervals based on Student's t will not be as precise as they

could be if they were otherwise based.

A robust estimate performs well in spite of deviations from

ideal behavior, particularly if there are some values in the far

ends of the tails. There are many robust estimates of location and

spread, as can be seen in The Princeton Robustness Stud (Bickel et

al. 1972), EDA (Tukey 1977), and Data Analysis and Regression

(Mosteller and Tukey 1977). In this study alternative "t"-statis-

tics to Student's t will be formed using a variety of location and

spread estimates. Some of these "t"-statistics are not only robust,

but are also easy to compute.
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Once results are collected concerning the "t"-statistics the

next problem is how to interpret them. The notion of criteria for

quantifying the performances of the resulting intervals is examined.

Traditionally, the Expected Confidence Interval Length, or ECIL, has

been emphasized. ECIL was used by both Gross and Kafadar because of

its intuitive appeal as a measure of performance of a confidence pro-

cedure.

In order to examine other criteria, large classes of criteria

are defined along the lines of conservatism of approach. ECIL,

then being Just a member of a class, is no longer viewed as the

principal approach, but one of many.

2. EASILY COMPUTED "t"-STATISTICS

2.1 0'-er Statistics, Depths, and Hinges

Given n data points we can order them so that x1 : x2  X... n

th
where xi will be referred to as the i order statistic. We will

define the depth of an order statistic as the position of the order

statistic with respect to either the minimum, X1 , or the maximum,

xn , whichever is closer. Thus, the order statistics, xi and

Xn-i+l both have depth equal to i.

A given depth defines two order statistics: that order statis-

tic whose depth is with respect to the minimum and that whose depth

is with respect to the maximum. If the given depth is not an integer

but a half-integer, then the corresponding order statistic is not a



single ordered data value, but an average of two ordered data values

of adjacent depths. So, for example, if we want the two order sta-

tistics whose depth is 1 1/2 then the smaller one is (x +X 2)/2 ,

and the larger one is (x nl+x1)/2. The now define the hinge-depth as

([(n+l)/21+l)/2 where [ I is the greatest integer function. Note

that this defines two hinges; a lower hinge, xL , say, and an upper

hinge, xU , where xL - xU by construction. The hinge-depths are

approximately n/h for large n, so that hines are similar to

quartiles.

Based on these order statistics, XL and xu, the natural

estimate of location is the mid-hinge, or (XL+xu)/2. Similarly, a

natural estimate of the spread of the data is the hinge-spread, or

xu-x L . We can now form a "t"-statistic from just two (or four)

such order statistics, namely the hinge-t: (xL+xu)/2(xU-XL).

We can define other "hinge"'s and thus other "hinge"-spreads and

"hinge"-t's. Define the hinge(-)-depth as the hinge-depth minus 1/2.

This will yield the hinge(-)-t: (xL_+xu_)/2(xu_-xL_) with the obvious

definitions. Now for a given sample size, either the hinges or the

hinge(-)'s will be exact order statistics, while the others will be

averages of two adjacent order statistics.

Similarly, let us define hinge(--) as those order statistics

whose depth is the hinge-depth -1, and the hinge(+) as those order

statistics whose depth is the hinge-depth +1/2. So, there are now

four "hinges" to be considered, and thus, four "hinge"-spreads.
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2.2 Sampling Situations

To assess how well an estimator performs one must examine it

under a variety of situations. In this study we shall examine sev-

eral estimators and "t"-statistics with various underlying, distri-

butions. To keep with tradition, one of these distributions will be

the standard Gaussian, but since it is probably rare that real data

are distributed in this way, the other distributions used will have

heavier tails than the Gaussian.

Since we believe that real data tend to be Gaussian in the mid-

dle, then the family defined by Z/Uk, where Z has a Gaussian

(0,1) distribution, U is uniformly distributed over the unit

interval and independent of Z, and 0 5 k S 1, is a useful family

for the pruposes just discussed. This family will be referred to as

the Slash family of distributions (Rogers and Tukey 1972).

I- this study we will look at four members of this family. The

first was already mentioned, that is the case k = 0, or the stan-

dard Gaussian case. If we now think of k = 1/v where 1 r v < 0

then Z/Uk is Gaussian in the middle, but has tails that behave like

the Student's t-distribution with v degrees of freedom (Rogers and

Tukey 1972). The other three cases that will be used are v =1,2

and 3, yielding distributions that are Gaussian in the middle but

have the tail behavior of the t-distribution on 1, 2 and 3 degrees

of freedom respectively. These distributions will be referred to as

the Slash, Slasq, and Slacu respectively.
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2.3 The "Hinge"-spreads

As described previously we have four "hinges": hinge(--),

hinge(-), hinge(+), and the hinge itself. Hence there are four

possible "hinge"-spreads, each of which could be used as the denom-

inator of a "t"-statistic: hinge(--)-spread, hinje(-)-spread,

hinge(+)-spread, and hinge-spread. At this stage we would like to

examine these "hinge"-spreads more closely, and, if possible, narrow

our focus to the more sensible of these potential denominators.

Hopefully, we can focus on two such "hinge"-spreads: one based on

two order statistics and one based on four.

If we let X = x1l,... ,xn be a sample of n data points from

a particular distribution then we are interested in comparing the

"hinge"-spreads using some appropriate measure of performance. A

reasonable masure of performance of hs(X) is its coefficient of

variation, or CV(hs(X)) = .Aar(hs(X))/E(hs(X)). This quantity has

the desirable property of being dimensionless.

In order to assess the "hinge"-spreads we have generated, for

each sample size, 1000 samples from each of the four distributions

mentioned earlier: Gaussian, Slacu, Slasq, and Slash. For each

situat ,n (distribution, sample size) we compute the coefficient of

variation for each "hinge"-spread. Since we are comparing these

spreads, we divide each coefficient of variation by the minimum

coefficient of variation of the four spreads in each situation.

The results are presented in Table 1, where the sample sizes exam-

ined were 5 through 10 inclusive and 20.



As was to be expected, hinge(--)-spread is extremely sensitive

to the heavy tails of the Slasq and Slash distributions, especially

with small sample sizes. Hinge(+)-spread has the worst performance

of the "hinge"-spreads in the Gaussian case while not doing much

better than the hinge-spread for the heavy-tailed cases. Some people

could argue that Slash is too heavy-tailed a distribution to con-

sider. If we drop Slash as a distribution to be considered, the

above remarks concerning hinge(--)-spread and hinge(+)-spread are

still valid when Slasq is the most heavy-tailed distribution used.

Hinge-spread and hinge(-)-spread came out the best compromises

and so will be the focus of the more detailed study to follow. These

two "hinge"-spreads have the advantage of allowing us to choose, for

each sample size, a "hinge"-spread based on either two or four order

statistics.

To simplify matters further define the pivot as either the hinge

or hinge(-), whichever is an exact order statistic, and the bi-pivot

as that which is not an exact order statistic. Thus, the depth of

the pivot will always be an integer, while that of the bi-pivot will

always be a half-integer. We can similarly define the pivot-t as

the mid-pivot/pivot-spread, and the bi-pivot-t analogously. So,

for example, if we have 5 data points, with the hinge depth = 2,

the pivot-t would be the hinge-t and the bi-pivot-t would be the

hinge(-)-t. If we have 7 data points, with the hinge depth = 2.5,

the reverse is true. So for each sample size then there will be a

"t"-statistic based on two order statistics and another based on four.
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2.4 Five "t"-statistics Examined

In this study five "t"-statistics, each of the form

location estimate/spread estimate, and the confidence intervals for

location derived from them will be examined and compared. Two of

these are the hinge-t and the hinge(-)-t, equivalently the pivot-t

and bi-pivot-t, with the correspondence depending on the sample size.

The first "t"-statistic that will be compared with these will be the

traditional Student's t, v7, where x is the sample mean, s is

the sample standard deviation, and n is the sample size.

The other two "t"-statistics examined are of the more robust

type than is Student's t. The first such "t"-statistic is based

on the median, which will be referred to as median-t, or med-t.

Med-t .s defined as x/2.MAD, where x' is the sample median and

MAD is the median absolute deviation from the median, or medlxi-kI.

The final such "t"-statistic is based on the bisquare weight func-

tion, which will be called the biweight-t, or biwt-t. Biwt-t is

defined as the c-biweight/sbi, where the biweight x* = -wixi/Zwi,

where

2 2 2
w i= l~iu) if u i<l1

0 else

u. = (xi-x*)/cS, S is an estimate of spread, and c is a constant.

Here we will take S equal to the MAD and c = 9. Since the bi-

weight is an iterative procedure and we wish to keep things simple

we will only look at one-step biweights starting at the median, i.e.,
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the initial x* will be taken to be . So, to be more specific

in our notation, the biweight to be examined is a one step c = 9

biweight, or a w9-biweight.

The spread estimate, sbi' is defined by
2 (= ((u 2 )( -5u2)1 where
Sbix __u _+j(_ (-u whr

indicates summation over those x data points for which u2 S 1

(Mosteller and Tukey i19''(). Thus, the biweight "t"-statistic will

be referred to as the w9-biweight-t or, the w9-biwt-t.

3. TIE CONSERVATIVE CONFIDENCE INTERVALS

3.1 Construction of Confidence Intervals

Since, for a given "t"-statistic, a two-sided 100(1-a)%

confidence interval has the form (location estimate) ± (spread

estimate)-(lO0(l-a/2)% point of location estimate/spread estimate),

the problem of computing a confidence interval boils down to find-

ing the appropriate 100(1-a/2)% point. Thus, for each sampling

situation (fixed sample size and distribution) and "t"-statistic

the appropriate 97.5% point will be computed. In this study we

will concentrate our efforts on two-sided 95% confidence inter-

vals, though percent points for other levels are included in the

final section.

In order to compute these percent points we take advantage of

the fact that the distributions in question are from the Slash fam-

ily, i.e., distributions of random variables of the form Z/Y,

where Z is distributed as a unit Gaussian and Y is positive and
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independent of Z. Thus the tail probabilities of the "t"-statis-

tics can be computed using a Monte Carlo location and scale swindle

(cf. Simon 1975). The percent points are then obtained by doing a

bisection on these probabilities.

3.2 Conservative Confidence Intervals

For a given sampling situation and "t"-statistic, it is assumed

that the user will know everything except the underlying distribution

of the data. While we wish to be robust we should not be foolhardy.

Hence, in order to be conservative, we will use the maximum percent

point across the four distributions in each case. The use of these

conservative percent points is to insure that the corresponding in-

tervals are not less than level 100(1-(I)%.

So, for each sampling situation and "t"-statistic the conserva-

tive two-sided 95% confidence interval is as follows: (location

estimate for "t" from given sampling situation) ± (spread estimate

of "t" from same sample) -(conservative 97.5% point of the "t"-

statistic).

4. ASSESSING PERFORMANCE

4.1 Deciding among the "t"'s

We have five "t"-statistics: Student's-t, median-t,

w9-bieight-t, hinge(-)-t, and hinge-t. Now that we have their

respective conservative 97.5% points we can construct conservative

95% confidence intervals. The question arises: How do we decide
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among these five "t"-statistics? Clearly some criterion, or measure-

ment of performance is needed. Once we have these criteria we can

measure the performance of each "t" and eventually be able to com-

pare the different "t"'s by some measure of efficiency based on the

criteria. This aspect will be discussed later.

Given that our intervals will cover the true value 95% of the

time it would be desirable that their lengths be as shor t as possible.

Thus it seems logical that a measure of performance of a confidence

procedure based on "t" would be some measure of the lengths of the

confidence intervals given by that procedure.

We will be concerned with the performance of a confidence pro-

cedure in a specific situation. By situation we mean a fixed under-

lying distribution and sample size upon which each interval is based.

So let L1 ,... ,L n be a sample of n confidence interval lengths from

a procedure based on "t" under a specific situation. Let F ben

the empirical distribution function of the Li's which we will now

take to be ordered. Since all that we required of our criterion in

the previous paragraph was that it be some function of the confidence

interval lengths we will call a functional C a criterion if C(F )
n

is nonconstant.

The class of such functionals is a very borad one because dif-

ferent investigative aims may require different criteria. A very

conservative criteria might weigh heavily the longer interval lengths.

In the other direction, a criterion could downweight the unusually

long interval lengths. Clearly some criteria are more reasonable

.... -bon..
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than others, just as some investigators are more reasonable than

others.

The class of criteria contains a large subclass from which most

investigators would be oatisfied to choose. This i; the clacs of

functionals that yield polynomials in the L.'s. Specifically, ifi

P is a criterion then P G P , the class of polynomial criteria,

if P(F ) = L T
b+

n i1 11 11

The class of polynomial criteria contains a very important

class of functionals. That is, P contains the class of function-

als that is location and scale invariant. Thus all of the usual

location estimates (mean, median, mid-hinge) are in the class P .c

It should be noted that P contains a lot of other function-
c

als which may seem like reasonable criteria but are not location and

scale invariant. A very conservative, perhaps foolish, investigator

may use the Expected (length 2 ) as a criterion (i.e., C(F) n i2
n n i ).

This is very conservative because it will heavily penalize a pro-

cedure that yields even a slightly long-tailed distribution of inter-

val lengths. Since we are neither overly conservative nor overly

risky (e.g., C(Fn) =/li+.- . +vrn), we choose to concentrate on

the class of criteria such that bI 
= . bn =1 . It so happens that

this is the class of criteria that are location and scale invariant.

Now that we have narrowed our class of criteria to the subclass

containing C, such that C(F) = a 'L +-" +an L we should fur-

ther ask what choices of the ai's would yield reasonable criteria.

Since all the L.'s are -0 a criterion that examines gaps between1
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the L. 's would have little advantage over one that looked at the1

L 's themselves. Thus, we will restrict our attention to criteria

such that a. > 0 for all i. Further, since we will often compare1

namong procedures we might as well require that 7-a. = 1.: i=l 1

What had started out as a huge class of criteria, albeit many of

which were foolish, has now been reduced to the class of functionals

that yield convex combinations of the ordered interval lengths.

While it would seem that we are restricting ourselves to the subclass

of location and scale invariant functionals it must be emphasized

that these invariance properties came as a result of the restrictions

placed on the b. 's, au] not from any a priori desirability for locL-

tion and scale invariance.

It must also be emphasized that the main purpose of these cri-

teria is not necessarily to estimate the location of the distribution

length_ All of the criteria in PcI say, however unreasonable,

measure some aspect of the interval lengths; the location parameter

may be just one aspect that the investigator may be interested in.

Like the invariance properties, point estimation of the location of

the distribution of the confidence interval lengths may be achieved

by a criterion, but this is due to the restrictions on the a. 's and

iib i 's and not necessarily on an a priori desirability to estimate

location.

4.2 ECIL

Gross (1073) and Kafadar (1079) used a, tlicir erit',,rion for mu-

suring the performance of "t"-statistics the ECIL, or the Expected



13

Confidence Interval Length. This is the obvious measure of perform-

ance with which to examine the behavior of the intervals. As in the

previous section, ECIL should be thought of as an assessment of the

performance of the confidence interval procedure based on "t", and

not as an estimate of the location of the sample of the confidence

interval lengths based on that "t".

ECIL does, on the surface, seem a reasonable measure of perform-

ance of a confidence procedure, giving equal weight to each interval

length. However, while the main purpose of ECIL is not in trying

to estimate the location of the distribution of confidence interval

lengths, and thus not explicitly calling for a more robust procedure,

the spirit of robustness need not be totally ignored.

If we judge the desirability of a confidence procedure by exam-

ining its ECIL, we may make decisions because of a particularly vio-

lent behavior in the tail of the distribution of the lengths. Surely

we want to be aware of whether a confidence procedure yields interval

lengths that are drastically skewed toward high values. Yet, we may

be over-penalizing a confidence procedure because a small percentage

of its interval lengths are unusually long. It would seem then that

a reasonable measure of performance could be based on a truncated

ECIL: the expected confidence interval length of the smallest %,

or the 0%-ECIL.

4.3 0%-ECIL

What are good choices of 0 in light of the previous discussion?

We are trying to maintain a balancing act. We want highly skewed,
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heavy-tailed confidence procedures to be noticed, yet, if this unde-

sirable behavior occurs only quite occasionally, we do not wish to

penalize an otherwise sound confidence procedure. In light of the

first part of the balance, we could be overly risky if we used a

less than, say, 90. For example, if a confidence procedure yields

interval lengths whose top 20% are unusually long then we would

probably want our criterion to reflect this fact. Yet, we may be

willing to let our criterion ignore the top 10%. If we use 90%-ECIL

we still have a reasonable handle on how violently the intervals

behave while not allowing the tail of their distribution to exert too

much influence.

One could argue that since we have been conserv:ative in protect-

ing ourselves vis-a-vis the intervals themselves, why not continue in

this vein with rega-d to their assessment, i.e., use ECIL. If we

choose we can be even more extreme than ECIL. We could take a

weighted average of the interval lengths giving7 the longer ]ength

more weight. The question boils down to how much we wish the tail

of the distribution of the interval lengths to influence our Judg-

ment of the corresponding confidence procedure. Averaging the first

90% of the interval lengths seems one reasonable choice.

4.4 b%-CIL

Another criterioni 'or performankce of a confidence procedure

would be some measure of how stretch-tailed is the distribution of

interval lengths. Precisely, at what point do we have % of ther!
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interval lengths lying to the left, i.e., we could use the 0-per-

centile of the confidence interval lengths, or 0%-CIL. As with

V-ECIL we must keep in mind thaL we are trying to muasure perform-

ance based on the behavior of the interval lengths. Again, if 5

is too small we would be using a criteria that might ignore too much

of the tail of the distribution of the interval lengths, while a

that is very large might keep us from using a procedure which is

usually pretty good. For the above reasons, as with V%-ECIL,

= 90, or 90%-CIL appears to be a good criterion for the perform-

ance of a confidence procedure.

4.5 90%-ECIL vs. 90%-CIL

It is clear that the 90%-ECIL and the 90%-CIL measure dif-

ferent aspects of the confidence procedure, though both appear to be

valid criteria. A logical question is: When do the two criteria

differ drastically, in the sense that they disagree as to which of

two confidence procedures is preferable? In Figure A, the graphs

indicate the underlying densities of interval lengths for CI, con-

fidence procedure 1, and similarly for C2, confidence procedure 2.

The density for C has a long~er tail than that of C 2 o thc

90%-CIL criterion will favor the second confidence procedure. But,

the 90%-ECIL for C is less than that of C2 , thus implying that
1

the first confidence procedure is better.
The differences need not be so drastic. C may be 85% effi-

cient (in some sense) with respect to C2 using 90%-CIL and 95%

|A
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efficient using 90%-ECIL. Our action in either case would be to

report both resuits. One mighL objeeL hIe and vuhumeriLly argue f'ur

a single measure of performance so as to be able to make statements

like: "Procedure C1 is 78% as efficient as procedure C2 using

criterion (blank)." If one must choose between the two criteria we

recommend using 90%-ECIL over 90%-CIL because of situations that

might occur as in Figure A where we would not like C1 penalized

so much only because its tail is a bit stretched.

h.6 Tetra-efficiencies

We can define the V%-ECIL (distribution) -(relative) effici-

ency as the inverse squared ratio of the O%-ECIL for each "t"-

statistic to the best such %-ECIL among all five "t"-statistics.

So, for example, in the Gaussian case we have, say, the 90%-ECIL

for c: i "t". We cant then define the 90/-ECIL Gun irun effici,ncy

of "t" as:

minimum(Gaussian 90%-ECIL for all "t"'s]/(Gaussian 90%-ECIL for "t"].

We can repeat this for Slacu, Slasq, and Slash yielding four effici-

encies for each "t".

In the previous discussion it was pointed out that given a cri-

terion for measuring performance we would then wish to make state-

ments as to the efficiencies of the confidence procedures. We have

five "t"-statistics with their respective conservative 97.5%5 points.

For each "t" we draw samples from each of the four distributions
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mentioned earlier. This yields for each distribution and "t"-sta-

tistic a sample of confidence interval lcngLh . Also, there are

four criterion- (distribution)- (relative) efficiencies for each

"t"-statistic, one for each of the four distributions. As with

Kafadar's tri-efficiency we can define the (relative) tetra-effici-

ency of "t" as the minimum ((distribution) -efficiency of "t").

Each (distribution)-efficiency answers the question: "If the

underlying distribution were in fact (distribution) how well would

"t" do relative to the best of the other four "t"'s? The tetra-

efficiency then is a response to the fact that in practice we never

know the underlying distribution. Thus, to be conservative, we take

for each "t" its minimum (distribution)-efficiency. Exhibits 2

and 3 give the tetra-effiviencvio for the rp-ECIL and the 3%-CIL

criteria respectively, for j = 50,80,90,95,99, and 100. (Notice

that Slasq never provides the extreme, and that Slacu does only

once, at n = 2n, o = 100%.)

4.7 Comments

The results indicate that all of the hinge-"t"'s outperform,

in terms of tetra-efficiency, Student's t and Medi.an-t for samp]e

sizes between 4 and 20. Aside from drops of tetra-efficiency for

hinge-t at sample size = 5 (pivot-t) and hinge(-)-t at sample

size = 6 (bi-pivot-t) the hinge-"t"'s stand up well to the

biweight-t for sample sizes g9.

As might be expected, hingc-t and hingc(-)-t outperform each

other, by and large, according to whichever is the bi-pivot-t for

that particular sample size. Again, the exception is at sample size
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It is clear from the above results that the relative perform-

ances of these "t"-statistics are intimately related to the size

of the sample in question. As previously noted there seems to be

some strange behavior among the hinge-"t"'s for sample sizes be-

tween 4 and 6, e.g., the large drop in tetra-efficiency for the

bi-pivot-t at sample size = 6. This is probably due to the fact

that this is the largest sample size for which any of the hinge-"t"'s

uses the extreme values of thc simple.

In light of previous arguments, one could argue that in using

Slash as a fourth distribution for such sample sizes one may be

over-penalizing some of the confidence procedures. It could be

argued that it is rare that such contamination is found and we may

not want to protect against it especially in small sample sizes. If

Slash is omitted as a fourth corner for sample sizes 4 through 7,

what were tetra-efficiencies aro now tri-efficienien. Exhibits 4

and 5 give the Lri-efficiencies for %-ECIL and 0%-CIL re;pec-

tively. The major differences in these exhibits are the performances

of Student's t and the hinge-"t"'s, especially hinge(-)-t.

If one adheres to 90%-ECIL as the preferred criterion then

Student's t is the relative best "t"-statistic for sample sizes

4 through 7. If, on the other hand, one uses ECIL or 90%-CIL

then the bi-pivot-t statistic is the best performer for sample

sizes 4 through 6 (hinge-t for sample size 4, hinge(-)-t for sam-

ple sizes 5 and 6).
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While the biweight-t is not that good for sample sizes 4

through 6, it does start improving for sample sizes 7 through 9. In

this range it appears to be very close to the bi-pivot-t. Their

differences in 90%-ECIL tetra-efficiency are 1.9%, 4.7%, and

2.6%, the first two in favor of the biweight-t. It is up to the

user who prefers tri-efficiency whether these small numbers warrant

the extra effort required to eompute the hiweipht-t itnti:tic.

III tie ralgc or :.UnpIc oizcs 10 thr ugh "0 tilh biw~llgit-L Lta-

tistic shows itself to be the clear winner over the hinge-"t"'s by

about 20%. However, it must be emphasized that, considering how

easy it is to uie the hinge-"t"'o, it is surprisin(' how wcl] the.,

perform relative to the biweight-t. When confidence intervals are

required quickly it would not be unreasonable to use the bi-pivot-t

for sample sizes as large as 20.

It should be noted that while the three criteria (90%-CIL,

90%-ECIL, and ECIL) give different quantitative results, i.e.,

different tetra-efficiencies, they give similar qualitative results:

the hinge-"t"'s do well for sample sizes <10 and the biweipht-t

does the 1c ,11t 1 1,, 0 : 1i ze 0 .O

4.8 1-.unuarizing the 11Rcults

In this section we will often summarize results which omit the

Slash as a distribution to be considered. The tri-efficiencies of

the previous section excluded the Slash in two ways: from determin-

ing the conservative percent point and from determining the efficiency.
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In this section we will distinguish between these two ways. When

Slash is excluded from determining the conservative percent point we

will refer to this situation as one of tri-confidence. When Slash

is excluded from determining efficiencies we will refer to the result-

ing numbers as tri-efficiencies. *Similarly, when Slash is included

we will refer to tetra-confidence situations and tetra-efficiencies

respectively. These distinctions will aid in summarizing the results

of the previous sections.

In Table 6 we present summary statistics for the 90%-ECIL

criterion. These statistics are the means and medians of the tetra-

efficiencies for the "t"-statistics across a variety of sample sizes.

Note that the pivot-t and bi-pivot-t are used here instead of the

hinge(-)-t and hinge-t. The reason for this is that there is a

clear difference between the pivot-t and bi-pivot-t as can be seen

in Tables 2 through 5. These tables also show the difference between

the hinge(-)-t and hinge-t not to be as clear cut.

rrom Table 6 the clear winner is the biweight-t which main-

tains a tetra-efficiency of about 85% for most of the ranges of

sample sizes. Coming in second and third are the bi-pivot-t and

pivot-t respectively. The bi-pivot-t is about 15% less tetra-

efficient than the biweight-t for most of the ranges examined. It

is up to the user to decide whether the extra effort in computing the

biweight-t statistic is worth the 15% gain in efficiency over the

simple bi-pivot-t statistic.

Similarly, the pivot-t statistic is only about 6% less

L .. ...i..................... .. ..............
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tetra-efficient than the bi-pivot-t statistic. Again, it is up to

the user to decide if this modest gain in tetra-efficiency gotten by

using the simple bi-pivot-t is worth it instead of using the even

simpler pivot-t.

The above remarks can be seen more clearly if we examine the

stem-and-leaf diagrams presented in Table 7. This shows clearly the

order of the "t"-statistin in torms of performance for f: -pe sizes

between 4 and 20 according to the 90%-ECIL criterion. Biweight-t

is the best, followed by bi-pivot-t, closely followed by pivot-t,

with Medioan-t a fair fourth place, and Student'o t the worst.

Table 8 gives results when Slash is dropped from consideration

either in determining the conservative percent points (tri-confidence)

and/or determining efficiency (tr-efficiency). Comparing these re-

sults with those of Table 6 we note the great improvement of Student's

t when Slash is not used to help determine efficiency. The pivot-t

and bi-pivot-t improve (relatively) slightly in tri-confidence situ-

ations. The bi-pivot-t improves (relatively) a bit more, though,

when tri-efficiencies are used.

We also note that for the larger sample sizes Student's t has

a tri-efficiency of about 72%. This puts it in third place with

respect to tri-efficiency/tri-confidence behind the biweight-t and

bi-pivot-t. If we consider tri-efficiencies for tetra-confidence

situations then Studcnt's t tics for second place with the bi-

pivot-t.

Table 9 compares tri-efficiencies and tetra-efficiencies for
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sample sizes 4 through 7. (Note that no distinction need be made

between tri-confidence and tetra-confidence since Slash does not con-

trol for conservatizsm for aniy of the "t"-LLtAi:tIc:' in thi:

Student's t is the clear winner with the bi-pivot-t not too far

behind. As with the tetra-efficiencies, pivot-t is in third place

behind the bi-pivot,-t. Now, thouh, the di fferr(,oo- are a Lit, big-

ger between these latter two: about a 30% difference in tri-

efficiency. Thus, using teh bi-pivot-t over the pivot-t gives a

gain of about 17% in tetra-efficiency, but yields a gain of 30%

in tri-efficiency. These large differences should warrant the use

of the slightly more complicated bi-pivot-t statistic.

So it seems that exclusion of the Slash distribution only really

matters to Student's t and the bi-pivot-t. Bi-pivot-t is still

very good even when Slash is included, but Student's t does poorly

(relatively) when tetra-efficiencies are examined. Also, as stated

before, in the determination of the conservative percent points, it

does not matter for small sample sizes whether or not Slash is

included.

lil conclusion we would recommend using the bi-pivot-t for the

small sample sizes since it makes a good showing in terms of both

tetra- and tri-efficienoy. We recommond using, the biweight-t for

sample size = 4 to 7, if one does not mind the extra work and

believes the data may be highly contaminated. We recommend the use

of Student's t for such small sample sizes if one is very confi-

dent that the data are not extremely stretch-tailed.
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5. PIVOT-t AND BI-PIVOT-t TABLES

Table 10 rives conservative percent points for thr- pivot-t and

bi-pivot-t for various p-values. This table uses results from one

of the four distributions to compute the conservative value. If one

wishes to omit Slash as a distribution to be considered the corre-

sponding conservative values are given in Tablo 11.

Appendix

The nibcrs used to compute the tctrt-efficicnciuo of Suctionl h.6

were the r%-ECIL and %-CIL. These numbers wer not given because

they are too numerous. However, these numbers are given along with

standard error estimates in Horn (1981). The standard error esti-

mates were computed using half-sampling techniques (Tukey 1980).

Also, the swindle used in computing the percent points (Simon

1975) given in the last section provides standard error estimates.

However, these standard error estimates are for the tail probability,

1iot the critical value (-intce Liii wuas compu ted using a b.;,-cLi on).

Estimat-on of the standard error of the critical value is discussed

in Horn (1981). The standard error estimates of the critical values

Were practiCally "1 Ll w:y:1 Ili:iih 3% of Lih c(r i oi':il val 1i,. Ti ,,

exception occured for the pivot-t with sample sizes = 5 and 6 where

the standard error estimate of the critical value was equal to 20%

of the critical value.

The random numbers used were generated on a PDP-lI. A double

shuffler was used in the algoritlm.

-A
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Table 1. Coefficients of Variation of "Hinge"-spreads (Divided by
the minimum in each row).

"Hinge"-spread

ss hinge(--) hinge(-) hinge hinge(+) Distribution

1.00000 1.00382 1.51976 1.51976 Gaussian
1.13669 1.00000 1.19620 1.19620 Slacu
1.42480 1.18698 1.00000 1.00000 Slasq
2.20960 i.99014 1.00000 1.00000 Slash

1.00961 1.00000 1.39442 1.48581 Gaussian

6 1.13119 1.00000 1.15038 1.17238 Slacu
1.43526 1.18440 1.01455 1.00000 Slasq
4.69311 4.35990 1.08413 1.00000 Slash

1.00000 1.32659 1.38094 2.03156 Gaussian
1.00000 1.02637 1.02740 1.45203 Slacu
2.21717 1.06927 1.00000 1.29146 Slasq
4.22831 1.51415 1.25714 1.00000 Slash

1.00000 1.24472 1.25355 1.61735 Gaussian

8 1.24378 1.01459 1.00000 1.29048 Slacu
1.60629 1.05921 1.00000 1.17550 Slasq
6.33126 1.49976 1.24268 1.00000 Slash

1.00000 1.00609 1.29445 1.37583 Gaussian
1.01088 1.00000 1.23282 1.31778 Slacu
1.08814 1.00000 1.16169 1.18185 Slasq
2.60375 1.98406 1.13425 1.00000 Slash

1.00000 1.01290 1.24138 1.30474 Gaussian
1.02971 1.00000 1.19578 1.19353 Slacu

10 1.11580 1.00000 1.07064 1.05630 Slasq

2.21142 1.73319 1.11052 1.00000 Slash

1.00000 1.11158 1.11814 1.26797 Gaussian

1.00000 1.09747 1.07473 1.17880 Slacu
20 1.00000 1.05074 1.05245 1.16787 Slasq

1.15923 1.08967 1.00000 1.00068 Slash
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Table 6. Summary of 90%-ECIL Relative Tetra-efficiencies:

(for 95% tetra-confidence)

Range of Sample Size

4-20 6-20 8-20 10-20

t-statistic mean median mean median mean median mean-median

Student's t 23 15 16 13 14 13 12 13

Median-t 51 55 53 55 55 56 56 56

Biweight-t 79 87 85 90 88 90 89 90

Pivot-t 64 68 66 68 66 68 67 66

Bi-pivot-t 72 72 69 71 72 72 71 72

Li
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Table 7. Stem-and-Leaf Diagrams of 90%-ECIL Relative Tetra-
efficiencies for Sample Sizes 7-20:

(95% tetra-confidence)

"t"-statistic

Student's t Median-t Pivot-t Bi-pivot-t Biweight-t

0 899

1 01333557

2 95

3

4 15

5 12455667999 7

6 0 346788889 6789

7 003 111233366 07

8 0 1567

9 00011]23

(Values at sample size = 7 are underlined.)

.- W
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Table 9. Summary of Relative Efficiencies for Sample Sizes
4 through 7*.

Tri-efficiency Tetra-efficiency

t-statistic mean median mean median

Student's t 98 98 55 55

Median-t ho 1414 4o 44
Biweight-t 52 53 52 53

Pivot-t 63 63 58 63

Bi-pivot-t 89 95 75 80

*Distinguishing between tri- and tetra-confidence is unnecessary since

Slash does not contorl for the conservative percent point for sample

sizes 4 through 7.
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Table 10. Conservative One-tailed Percent Points, t P("t" tp) =p.
p p jP

(Distributions used = Gaussian, Slacu, Slasq, Slash)

Pivot -t
p =

n .75 .90 .95 .975 .990 .995 .999

4 .320 .477 .553 .738 1.o40 1.331 2.312

5 .387 .869 1.370 2.094 3.715 5.805 16.500
6 .298 .531 .759 1.035 1.505 1.962 3.557
7 .262 .451 .550 .720 .978 1.211 1.985

8 .223 .393 .469 .564 .741 .890 1.293
9 .257 .484 .688 .915 1.265 1.575 2.447

10 .216 .400 .523 .668 .878 1.051 1.584
11 .200 .363 .452 .545 .714 .859 1.281

12 .193 .344 .423 .483 .593 .697 .968
13 .208 .389 .497 .608 .792 .945 1.343
14 .189 .348 .437 .525 .661 .776 1.075
15 .172 .318 .399 .466 .586 .685 .945

16 .164 .299 .374 .435 .507 .591 .822
17 .176 .331 .421 .502 .637 .744 1.009
18 .161 .300 .380 .451 .555 .650 .904
19 .156 .288 .361 .423 .502 .575 .761
20 .143 .266 .447 .397 .464 .519 .678

Bi-vivot-L
p =

n .75 .90 .95 .975 .990 .995 .999

4 .372 .575 .831 1.127 1.614 2.079 3.642
5 .301 .466 .550 .717 .968 1.190 1.856
6 .288 .442 .486 .536 .699 .836 1.219
7 .308 .533 .745 .985 1.355 1.686 2.706

8 .244 .432 .548 .707 .939 1.133 1.650
9 .220 .388 .466 .571 .740 .878 1.279
10 .200 .354 .428 .480 .593 .690 .939
11 .219 .404 .513 .658 .867 1.o47 1.571

12 .203 .367 .456 .540 .694 .820 1.152
13 .182 .333 .415 .483 .586 .685 .935
14 .176 .316 .389 .445 .516 .599 .805
15 .184 .343 .434 .531 .677 .797 1.122

16 .171 .315 .397 .467 .575 .672 .942
17 .16o .294 .370 .434 .508 .584 .768
18 .150 .275 .344 .399 .465 .527 .695
19 .163 .303 .383 .453 .558 .641 .862
20 .1i8 .278 .354 .419 .499 .571 .747
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Table 11. Conservative One-tailed Percent Points, t : P("t" rt ) =p.P P
(Distributions used - Gaussian, Slacu, Slasq)

Pivot-t

n .75 .90 .95 .975 .990 .995 .999

4 .238 .428 .553 .738 1.040 1.331 2.312
5 .382 .869 1.370 2.094 3.715 5.805 16.500
6 .263 .531 .759 1.035 1.505 1.962 3.557
7 .211 .407 .550 .720 .978 1.211 1.985

8 .184 .350 .453 .564 .741 .890 1.293
9 .232 .484 .688 .915 1.265 1.575 2.447
10 .195 .384 .523 .668 .878 1.051 1.584
11 .163 .326 .430 .545 .714 .859 1.281

12 .15P .20? .381 .465 .593 (,97 .968
13 .184 .363 .486 .608 .792 .945 1.343
14 .165 .321 .425 .525 .661 .7Y6 1.075
15 .151 .291 .379 .1465 .586 .685 .945

16 .136 .262 .3141 .413 .507 .591 .822
17 .157 .308 .407 .502 .637 .744 1.009
18 .143 .278 .36h .1445 .555 .65u .90h
19 .133 .256 .333 .4o5 .502 .575 .761
20 .124 .237 .307 .371 .454 .519 .678

Bi-p!vot-t

n .75 .90 .95 .975 .990 .995 .999

4 .303 .575 .831 1.127 1.614 2.079 3.642
5 .229 .425 .550 .717 .968 1.190 1.856
6 .194 .355 .445 .536 .699 .836 1.219
7 .262 .526 .745 .986 1.355 1.686 2.706

8 .212 .413 .548 .707 .939 1.133 1.650
9 .177 .340 .450 .571 .740 .878 1.279
10 .i8 .30? .388 .17 . 503 .690 .939
11 .194 .381 .513 .658 .867 1.047 1.571

12 .170 .331 .435 .54o .694 .820 1.152
13 .150 .290 .380 .466 .586 .685 .935
14 .138 .26, .31; .11 hi .C16 .59( .805
15 .167 .324 .43b .531 .677 .797 1.122

16 .148 .287 .376 .459 .575 .672 .942
17 .136 .262 .31i .141) .508 .584 .768
18 .126 .242 .315 .381 .465 .527 .695
19 .144 .278 .364 .449 .558 .641 .862
20 .132 .255 .332 .1401 .14o9 .571 .747



Figure A. Underlying Densities of Interval Lengths
for Two Confidence Procedures: C 1, C2

10%

90%-ECIL(C) < 90%-ECIL(C)

90Z-CIL(C) > 90%10-CIL(C)
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